A Generalized Hochster’s Formula for Local Cohomologies of Monomial Ideals

نویسنده

  • YUKIHIDE TAKAYAMA
چکیده

The Hilbert series of local cohomologies for monomial ideals, which are not necessarily square-free, is established. As applications, we give a sharp lower bound of the non-vanishing degree of local cohomologies and also a sharp lower bound of the positive integer k of k-Buchsbaumness for generalized CohenMacaulay monomial ideals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Characterizations of Generalized Cohen-macaulay Monomial Ideals

We give a generalization of Hochster’s formula for local cohomologies of square-free monomial ideals to monomial ideals, which are not necessarily square-free. Using this formula, we give combinatorial characterizations of generalized Cohen-Macaulay monomial ideals. We also give other applications of the generalized Hochster’s formula.

متن کامل

The Alexander duality functors and local duality with monomial support

Alexander duality is made into a functor which extends the notion for monomial ideals to any finitely generated N-graded module. The functors associated with Alexander duality provide a duality on the level of free and injective resolutions, and numerous Bass and Betti number relations result as corollaries. A minimal injective resolution of a module M is equivalent to the injective resolution ...

متن کامل

Linear Resolutions of Powers of Generalized Mixed Product Ideals

Let L be the generalized mixed product ideal induced by a monomial ideal I. In this paper we compute powers of the genearlized mixed product ideals and show that Lk  have a linear resolution if and only if Ik have a linear resolution for all k. We also introduce the generalized mixed polymatroidal ideals and prove that powers and monomial localizations of a generalized mixed polymatroidal ideal...

متن کامل

Gröbner Bases and Betti Numbers of Monoidal Complexes

Combinatorial commutative algebra is a branch of combinatorics, discrete geometry, and commutative algebra. On the one hand, problems from combinatorics or discrete geometry are studied using techniques from commutative algebra; on the other hand, questions in combinatorics motivated various results in commutative algebra. Since the fundamental papers of Stanley (see [13] for the results) and H...

متن کامل

Tameness of Local Cohomology of Monomial Ideals with Respect to Monomial Prime Ideals

In this paper we consider the local cohomology of monomial ideals with respect to monomial prime ideals and show that all these local cohomology modules are tame. Introduction Let R be a graded ring. Recall that a graded R-module N is tame, if there exists an integer j0 such that Nj = 0 for all j ≤ j0, or else Nj 6= 0 for all j ≤ j0. Brodmann and Hellus [4] raised the question whether for a fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004